D-loop formation by Brh2 protein of Ustilago maydis.

نویسندگان

  • Nayef Mazloum
  • Qingwen Zhou
  • William K Holloman
چکیده

Brh2, the ortholog of the BRCA2 tumor suppressor in Ustilago maydis, works hand in hand with Rad51 to promote repair of DNA by homologous recombination. Previous studies established that Brh2 can stimulate DNA strand exchange by enabling Rad51 nucleoprotein filament formation on replication protein A-coated ssDNA. But, more recently, it was noted that Brh2 has an inherent DNA annealing activity, raising the notion that it might have roles in recombination in addition to or beyond the mediator function. Here, we found that Brh2 can autonomously promote the formation of D-loops in reactions with plasmid DNA and homologous single-stranded oligonucleotides. The reaction differs from that catalyzed by Rad51 in having no requirement for cofactors or preloading phase on ssDNA. D-loop formation was most effective when Brh2 was mixed with plasmid DNA before addition of single-stranded oligomer. D-loop formation catalyzed by Rad51 was also enhanced when Brh2 was premixed with plasmid DNA. Brh2 rendered defective in Rad51 interaction by mutation in the BRC element was still capable of promoting D-loop formation. However, the mutant protein was unable to enhance the Rad51-catalyzed reaction. The results suggest a model in which Brh2 binding to plasmid DNA attracts and helps capture Rad51-coated ssDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis.

In the phytopathogenic fungus Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bE and bW, encoded by the b-mating-type locus. We have identified a b-dependently induced gene, clampless1 (clp1), that is required for the proliferation of dikaryotic filaments in planta. We show that U. maydis hyphae develop structures functionally equivalent to...

متن کامل

Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis

The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colon...

متن کامل

Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes.

From a large expressed sequence tag (EST) database representing several developmental stages of Puccinia triticina, we discovered a mitogen-activated protein kinase (MAPK) with homology to kinases with known pathogenic functions in other fungi. This PtMAPK1 is similar to the Ustilago maydis MAPK, Ubc3/Kpp2, but has a longer N-terminal extension of 43 amino acids (aa) with identities to U. maydi...

متن کامل

A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin-proteasome degradation motif in ZmT...

متن کامل

Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis.

In the corn smut fungus Ustilago maydis, the dimorphic transition from budding to filamentous growth is intrinsically associated with the switch from a saprophytic to a pathogenic lifestyle. Both pathogenicity and filament formation are triggered by a heterodimeric homeodomain transcription factor encoded by the b mating type locus. Here, we present a reference map of the proteome of this dimor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2008